
Virgil specializes in developing technology-enabled solutions
that help individuals and businesses streamline the recruiting
process. Hcareers is one of their most popular recruitment
platforms that connects employers with hospitality talent.

About Virgil

During the first few weeks, our managed engineering team spent time learning about the current code,
platform architecture, and business logic. Following that, we re-architected the architecture to be built
on microservices, allowing the services to be decoupled and the application to be fail-safe.

Increasing the platform's scalability was one of the major concern. Hence, the system is containerized
using the AWS Fargate to delegate the scalability.

The data was centralized using AWS Athena for faster analytics and report generation.

Understanding the architecture

Built scalable platform

Faster report generation

The platform needed to be modernized in order to improve code performance.
Bulk job posting was a time-consuming process.
Quickly parsing resumes and building a match-making engine using Machine Learning.
For further visibility into the ROI, improved analytics and a customized solution were necessary.
Integration with existing ATS (Applicant tracking systems) for better recruitment management.

Challenges

Solution

We devised a system to keep track of messages in the queue while implementing a queuing
mechanism for submitting job postings. It will check for job posting notifications on a regular basis
and act on them instantly. Employers were having to wait longer earlier when AirSchedular was used
to execute this task.

This also increased debugging visibility for developers, allowing them to know if there were any errors
in uploading files.

Improved wait time

For faster resume processing and better application performance, we improved the
existing code.

Code optimization

The caching approach was put in place to reduce the number of times the Google location search API
billed for frequently searched job locations. We used ElastiCache for two months and preserved the
caching limit, which allowed us to cache locations several times while only being paid once.

Caching mechanism implementation

We enabled a mass job posting mechanism in the system for large-scale recruiting and candidate
screening based on the preferences of thousands of relevant profiles.

Implementation of effective matchmaking process

Significantly improved scalability of the
platform.

Significantly enhanced application
performance, resulting in an increased
number of users.

Increased visibility into credit usage by clients
using the newly developed credit-ledger
system.

Using AWS managed services, the platform
can handle more than 600,000 users per day,
which is 10 times the previous figure, without
compromising the user experience.

Key Results

Architecture Overview

AWS Lambda transfers files from one location of Amazon S3 to another. For example, if one applicant
from India is applying for jobs based in the US, it transfers the resume from an S3 storage location in
India to S3 in the US.

Also, AWS Lambda updates any changes made in the applicant’s records to the underlying database.
For example, applicants’ records have some limits set for deletion from the database, or whenever
new users register with the platform, it updates the database.

Once applicants apply for a job, a confirmation email is sent. AWS Lambda triggers the SQS function
and executes micro functions to send an email.

Amazon Lambda:

All the app data for multiple microservices has been stored in Amazon RDS for scalability and ease of
operability.

It performs complex queries and various operations on relational data. For example, fetching job data
when users hit the search with their preferences.

In case of application data loss, automated snapshots have been used for better availability and
durability.

RDS management console is employed
to view operational metrics, monitor memory,
 and I/O activities, and connections.

Amazon RDS:

EC2 connects external resources to
private resources, creates virtual private
networks, and hosts tools, among other
things.

A special-purpose web API for limited
user accounts has also been hosted on
EC2. In our case, these are Premium
accounts of employers, admin users,
and so on.

Amazon EC2:

AWS Fargate manages containerized code of our application platform.

It has been chosen for better security and for eliminating the operational overhead of scaling,
patching, and managing servers.

Amazon Fargate:

AWS Athena was used to query
massive, raw application data files in the
whole application database, such as job
postings. It acts as a medium between
S3-stored Parquet files and third-party
analytics service.

AWS Athena:

We used Amazon Elastic Container Registry (ECR) to store our docker images for easy deployment
and download.

Amazon ECR:

AWS CloudWatch and CloudTrail are two AWS services we've utilized for monitoring and
troubleshooting.

CloudWatch Container Insights, composite alarms, and CloudWatch Logs Insights are used to collect
and evaluate various metrics, logs, and real-time metrics.

The use of CloudTrail made security analysis and troubleshooting more easier. It also allowed us to
have tighter AWS account security governance and risk auditing.

Monitoring & troubleshooting:

AWS Glue integrated with Athena was utilized to get data from Parquet files hosted on S3.
AWS Glue:

Since our job application platform contains enormous amounts of data from a variety of sources and
places, candidates must use a filter to narrow down their job search results based on their interests.

Elasticsearch did the job of quickly getting data based on user-defined filters such as employment
location, job role, and so on.

Elasticsearch:

